Eccentric connectivity index of bridge graphs

M. MOGHARRAB
Department of Mathematics, Persian Gulf University, Bushehr75169, Iran

The eccentric connectivity index $\xi(G)$ of the graph $G=G(V, E)$ is defined as $\xi(G)=\sum_{u \in V} \operatorname{deg}_{G}(u) \varepsilon(u)$ where $\operatorname{deg}_{G}(u)$ denotes the degree of vertex u in the graph G and $\varepsilon(u)$ is the largest distance between u and any other vertex v of G. In this paper, we calculate the eccentric connectivity index of bridge graph of the given graphs and distinguished vertices of them.
(Received September 28, 2010; accepted November 10, 2010)
Keywords: Eccentric connectivity index, Bridge graph

1. Introduction

The graph theory has successfully provided chemists with a variety of very useful tools, namely, the topological index. A topological index is a numeric quantity of the structural graph. In this paper, all of the graphs are assumed as connected simple graphs that are undirected.

Suppose that $G=G(V, E)$ be a graph. The eccentric connectivity index $\xi(G)$ of the graph G is defined as $\xi(G)=\sum_{u \in V} \operatorname{deg}(u) \varepsilon(u)$, where for a given vertex u of V, its eccentricity $\varepsilon(u)$ is the largest distance between u and any other vertex v of G that their distance $d(u, v)$ as the length of the shortest path connecting u and v in G. The maximum eccentricity over all vertices of G is called the diameter of G and denoted by $D(G)$ and the minimum eccentricity among the vertices of G is called the radius of G and denoted by $R(G)$. The set of vertices whose eccentricity is equal to the radius of G is called the center of G. It is well known that each tree has either one or two vertices in its center. In some research papers [1-15], the authors have computed the topological index eccentric connectivity index $\xi(G)$ of some graphs. The aim of this article is to continue this problem and compute the eccentric connectivity index of a bridge graph of the given graphs and distinguished vertices of them.

Suppose that $G_{1}=G\left(V_{1}, E_{1}\right)$ and $G_{2}=G\left(V_{2}, E_{2}\right)$ are two graphs that the vertices sets V_{1} and V_{2} are disjoint. Let $u_{1} \in V_{1}$ and $u_{2} \in V_{2}$ are given. The bridge graph of these two graphs with respect to u_{1} and u_{2} that is $B=B\left(G_{1}, G_{2}, u_{1}, u_{2}\right)$, is defined a graph that its vertices set $V(B)=V_{1} \cup V_{2}$ and its edges set $E(B)=E_{1} \cup E_{2} \bigcup\left\{u_{1} u_{2}\right\}$ where $u_{1} u_{2}$ is a new edge. In the same way, we can define the bridge graph of the n graphs. Suppose that $G_{1}=G\left(V_{1}, E_{1}\right), G_{2}=G\left(V_{2}, E_{2}\right), \ldots$
and $G_{n}=G\left(V_{n}, E_{n}\right)$ for $n>2$ be graphs for which the vertices sets V_{1}, V_{2}, \ldots and V_{n} are disjoint. Let $u_{1} \in V_{1} ; \quad u_{2,1}, u_{2,2} \in V_{2} ; \quad u_{3,1}, u_{3,2} \in V_{3} ; \quad \ldots ;$ $u_{n-1,1}, u_{n-1,2} \in V_{n-1}$ and $u_{n} \in V_{n}$ are given. The bridge graph of these n graphs with respect to these given vertices that is
$B=B\left(G_{1}, G_{2}, \ldots, G_{n}, u_{1}, u_{2,1} u_{2,2}, u_{3,1}, u_{3,2}, \ldots, u_{n-1,1}, u_{n-1,2}, u_{n}\right)$
is defined as a graph that its vertices set $V(B)=V_{1} \cup V_{2} \cup \ldots \cup V_{n}$ and its edges set
$E(B)=E_{1} \cup E_{2} \cup \ldots \cup E_{n} \cup\left\{u_{1} u_{2,1}, u_{2,2} u_{3,1}, \ldots, u_{n-1,2} u_{n}\right\}$
where $u_{1} u_{2,1}, u_{2,2} u_{3,1}, \ldots, u_{n-1,2} u_{n}$ are new edges.

2. Main results

In this section, we first compute the eccentric connectivity index of the bridge graph of two given graphs, then the eccentric connectivity index of the bridge graph of n given graphs for $n>2$ will be computed.

Theorem 1. Suppose that $G_{1}=G\left(V_{1}, E_{1}\right)$ and $G_{2}=G\left(V_{2}, E_{2}\right)$ are two graphs that the vertices sets V_{1} and V_{2} are disjoint. Let $u_{1} \in V_{1} ; u_{2} \in V_{2}$ are given and $B=B\left(G_{1}, G_{2}, u_{1}, u_{2}\right)$ is the bridge graph of these two graphs with respect to u_{1} and u_{2}. For a given vertex $u \in V(B)$, if $\varepsilon_{1}(u)$ be the eccentricity of u, as a vertex of G_{1} and $\varepsilon_{2}(u)$ be the eccentricity of u, as a vertex of G_{2}, then the eccentric connectivity index of the bridge graph $B, \xi(B)$, is given by

$$
\begin{aligned}
\xi(B) & =\sum_{u \in V_{1}} \operatorname{deg}_{B}(u) \cdot \operatorname{Max}\left\{d\left(u, u_{1}\right)+\varepsilon_{2}\left(u_{2}\right)+1 ; \varepsilon_{1}(u)\right\} \\
& +\sum_{u \in V_{2}} \operatorname{deg}_{B}(u) \cdot \operatorname{Max}\left\{d\left(u, u_{2}\right)+\varepsilon_{1}\left(u_{1}\right)+1 ; \varepsilon_{2}(u)\right\} .
\end{aligned}
$$

Proof. By definition of the eccentricity of a vertex in a graph, we conclude that for any vertex $u \in V(B)$, $\varepsilon(u)$ the eccentricity of u, as a vertex of B is given by $\varepsilon(u)=\operatorname{Max}\left\{d\left(u, u_{1}\right)+\varepsilon_{2}\left(u_{2}\right)+1 ; \varepsilon_{1}(u)\right\}$, if $u \in V_{1}$ and similarly $\varepsilon(u)=\operatorname{Max}\left\{d\left(u, u_{2}\right)+\varepsilon_{1}\left(u_{1}\right)+1 ; \varepsilon_{2}(u)\right\}$, if $u \in V_{2}$. This completes our proof.

Theorem 2. Suppose that $G_{1}=G\left(V_{1}, E_{1}\right)$, $G_{2}=G\left(V_{2}, E_{2}\right), \ldots, G_{n}=G\left(V_{n}, E_{n}\right), n>2$, and the vertex sets V_{1}, V_{2}, \ldots and V_{n} are disjoint. Let $u_{1} \in V_{1}$; $u_{2,1}, u_{2,2} \in V_{2} ; u_{3,1}, u_{3,2} \in V_{3} ; \ldots ; u_{n-1,1}, u_{n-1,2} \in V_{n-1}$ and $u_{n} \in V_{n}$ are given. We also assume that $B=B\left(G_{1}, G_{2}, \ldots, G_{n}, u_{1}, u_{2,1} u_{2,2}, u_{3,1}, u_{3,2}, \ldots, u_{n-1,1}, u_{n-1,2}, u_{n}\lceil\right.$

Acknowledgment

This paper was supported in part by Research Division of Persian Gulf University.

References

[1] V. Sharma, R. Goswami, A. K. Madan, J. Chem. Inf. Comput. Sci. 37, 273 (1997).
[2] S. Gupta, M. Singh, A. K. Madan, J. Math. Anal. Appl. 266, 259 (2002).
[3] S. Sardana, A. K. Madan, MATCH Commun. Math. Comput. Chem. 43, 85 (2001).
[4] T. Doslic, A. Graovac, O. Ori, MATCH Commun. Math. Comput. Chem., in press.
[5] B. Zhou, Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem. 63 (2010) (in press).
[6] A. R. Ashrafi, T. Doslic, M. Saheli, MATCH Commun. Math. Comput. Chem. 65, 221 (2011).
[7] S. Yousefi, A. R. Ashrafi, MATCH Commun. Math. Comput. Chem. 65, 249 (2011).
[8] M. Saheli, A. R. Ashrafi, Maced. J. Chem. Chem. Eng. 29, 71 (2010).
[9] M. Saheli, A. R. Ashrafi, J. Comput. Theor. Nanosci. 7, 1900 (2010).
[10] A. R. Ashrafi, M. Saheli, M. Ghorbani, Journal of Computational and Applied Mathematics (2010), doi:10.1016/j.cam.2010.03.001.
[11] A. R. Ashrafi, A. Karbasioun, M. V. Diudea, MATCH Commun. Math. Comput. Chem. 65, 193 (2011).
[12] G. H. Fath-Tabar, Z. Yarahmadi, A. R. Ashrafi, Optoelectron. Adv. Mater.- Rapid Commun. 4, 53 (2010).
[13] A. R. Ashrafi, H. Shabani, Optoelectron. Adv. Mater.Rapid Commun. 3, 1309 (2009).
[14] M. Ghorbani, A. R. Ashrafi, M. Hemmasi, Optoelectron. Adv. Mater.- Rapid Commun. 3, 1306 (2009).
[15] A. R. Ashrafi, B. Bazigaran, M. Sadati, Optoelectron. Adv. Mater.- Rapid Commun. 3, 1080 (2009).
[16] D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 1996.

[^0]$\varepsilon(u)=$
$\operatorname{Max}\left\{\varepsilon_{1}\left(u_{1}\right)+\left(\sum_{i=2, i \neq j}^{n-1} d_{i}\right)+d\left(u, u_{j, 1}\right)+d\left(u, u_{j, 2}\right)+\varepsilon_{n}\left(u_{n}\right)+n-1 ; \varepsilon_{j}(u)\right\}$, if $u \in V_{j}$ for $j=2,3, \ldots, n-1$. We can see similarly that $\varepsilon(u)=\operatorname{Max}\left\{\varepsilon_{1}\left(u_{1}\right)+\left(\sum_{i=2}^{n-1} d_{i}\right)+d\left(u, u_{n}\right)+n-1 ; \varepsilon_{n}(u)\right\}$, if
$u \in V_{n}$. This completes our proof.

[^0]: *Corresponding author: mmogharab@gmail.com

